
豆包 Doubao Image API 價格全面解析
Qwen2.5模型具有多種顯著特點,使其在自然語言處理領域中脫穎而出:
Qwen2.5系列模型分為多個版本,以適應不同的任務需求:
每個版本都有其特定的使用場景和優(yōu)勢,用戶可以根據(jù)自身需求選擇合適的版本進行使用。模型免費額度贈送
在使用Qwen2.5模型之前,需要確保環(huán)境準備充分,包括安裝必要的Python庫、獲取模型資源、安裝Hugging Face Transformers庫及其依賴。以下是步驟:
pip install torch
pip install transformers
pip install requests
這些庫包括:
從Hugging Face模型庫下載Qwen2.5模型:
curl -LO https://huggingface.co/second-state/Qwen2.5-14B-Instruct-GGUF/resolve/main/Qwen2.5-14B-Instruct-Q5_K_M.gguf
確保安裝最新版本的Transformers庫:
from transformers import AutoModelForCausalLM, AutoTokenizer
print("Transformers庫安裝成功!")
pip install accelerate
pip install sentencepiece
這些庫將幫助我們更高效地加載和使用Qwen2.5模型。創(chuàng)建API key
在使用Qwen2.5模型之前,需先加載模型和分詞器,并將其部署到指定設備上(如CPU或GPU)。
使用Transformers庫加載模型和分詞器:
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen2.5-7B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
選擇將模型部署到CPU或GPU:
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
基礎模型用于廣泛推理任務,指令模型用于特定任務:
model_name = "Qwen/Qwen2.5-7B"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
model_name = "Qwen/Qwen2.5-7B-Instruct"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
使用Qwen2.5模型進行推理需按以下步驟:
準備模型輸入,包括問題描述和系統(tǒng)指令:
prompt = "Find the value of $x$ that satisfies the equation $4x + 5 = 6x + 7$."
messages = [
{"role": "system", "content": "Please reason step by step, and put your final answer within boxed{}."},
{"role": "user", "content": prompt}
]
將輸入傳遞給模型并生成輸出:
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(**model_inputs, max_new_tokens=512)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
解析和處理模型的推理結果:
print(response)
在需要實時反饋的應用場景中,可使用TextStreamer:
from transformers import TextStreamer
streamer = TextStreamer(tokenizer, skip_special_tokens=True)
model.generate(**model_inputs, max_new_tokens=512, streamer=streamer)
通過API可方便地與Qwen2.5模型進行交互,以下為步驟:
訪問阿里云官網注冊賬號,創(chuàng)建API Key,獲取AccessKey ID和AccessKey Secret,并妥善保存。
在項目中設置API密鑰:
import os
os.environ['ALIYUN_ACCESS_KEY_ID'] = 'your_access_key_id'
os.environ['ALIYUN_ACCESS_KEY_SECRET'] = 'your_access_key_secret'
使用阿里云SDK創(chuàng)建客戶端對象:
from aliyunsdkcore.client import AcsClient
client = AcsClient(
os.environ['ALIYUN_ACCESS_KEY_ID'],
os.environ['ALIYUN_ACCESS_KEY_SECRET'],
'cn-hangzhou'
)
通過API發(fā)送請求并獲取響應:
from aliyunsdkcore.request import RpcRequest
request = RpcRequest('Qwen', '2023-09-01', 'Chat')
request.set_method('POST')
request.add_query_param('Prompt', '你好,通義千問!')
request.add_query_param('MaxTokens', '100')
request.add_query_param('Temperature', '0.7')
response = client.do_action_with_exception(request)
print(response)
解析并打印API響應:
import json
response_json = json.loads(response)
print(json.dumps(response_json, ensure_ascii=False, indent=2))
在實際應用中,模型的部署與優(yōu)化至關重要,涉及如何高效地部署和利用工具提升性能。
這些工具支持離線推理、在線推理和多GPU分布式服務,顯著提高模型性能和效率。
安裝vLLM并加載Qwen2.5模型:
pip install vllm
from vllm import LLM, SamplingParams
llm = LLM(model="path/to/qwen2.5")
生成文本:
sampling_params = SamplingParams(temperature=0.8, top_p=0.9)
prompts = ["Hello, how are you?"]
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
print(output.text)
評估Qwen2.5模型性能需設定多個基準,如準確性、連貫性、多樣性、速度和資源消耗。
通過人工評估、自動評估、基準測試和性能測試,全面評估模型的表現(xiàn)。
調用Qwen2.5模型時需了解輸入參數(shù)和返回參數(shù),確保正確處理模型輸出。
配置模型名稱、對話歷史記錄、核采樣方法概率閾值等參數(shù)。
import openai
openai.api_key = "your_api_key_here"
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "What is the capital of France?"}
]
response = openai.ChatCompletion.create(
model="Qwen2.5-Math-72B-Instruct",
messages=messages,
top_p=0.9,
temperature=0.7,
presence_penalty=0.5,
max_tokens=50,
seed=42,
stream=False,
stop=["n"]
)
print(response.choices[0].message.content)
Qwen2.5支持函數(shù)調用,通過Qwen-Agent和Hugging Face Transformers實現(xiàn)更靈活高效的推理。
安裝Qwen-Agent庫并準備模型和API:
pip install -U qwen-agent
from qwen_agent.llm import get_chat_model
llm = get_chat_model({
"model": "Qwen/Qwen2.5-7B-Instruct",
"model_server": "http://localhost:8000/v1",
"api_key": "EMPTY",
})
完整示例代碼展示如何使用Python調用Qwen2.5模型,從安裝必要庫到生成推理輸出的全過程。
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen2.5-7B-Instruct"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "請給我一個關于大型語言模型的簡短介紹。"
messages = [{"role": "user", "content": prompt}]
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(**model_inputs, max_new_tokens=512)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
API調用錯誤可能由網絡問題、API密鑰問題或請求格式問題引起。處理方法包括檢查網絡連接、使用重試機制、檢查API密鑰和請求格式。
通過使用緩存、批量處理、異步處理和優(yōu)化網絡請求,可以顯著提高API調用性能。
問:如何獲取Qwen2.5的API Key?
問:Qwen2.5模型有哪些主要特點?
問:如何提高Qwen2.5模型的推理速度?
問:Qwen2.5模型適用于哪些任務?
問:如何處理Qwen2.5模型的輸出?