隨著云原生與智能化趨勢加速,C#工程師在AI面試中不僅需掌握深度學習與機器學習基礎,更要熟悉ML.NET框架、微服務架構及容器化部署。招聘方高頻考察三大維度:
本文將結合YouTube精選視頻與實戰案例,提供完整的面試答題模板與項目示例,幫助C#工程師在AI面試中脫穎而出。
var mlContext = new MLContext(seed: 123); var data = mlContext.Data.LoadFromTextFile < Input > ("data.csv", hasHeader: true, separatorChar: ','); var pipeline = mlContext.Transforms.ReplaceMissingValues("Features") .Append(mlContext.Transforms.Categorical.OneHotEncoding("Category")) .Append(mlContext.Transforms.Concatenate("Features", "Feature1", "Feature2", "Category")) .Append(mlContext.Transforms.NormalizeMinMax("Features"));
var trainer = mlContext.Regression.Trainers.FastTree(labelColumnName: "Label", featureColumnName: "Features"); var model = pipeline.Append(trainer).Fit(data); var predictions = model.Transform(data); var metrics = mlContext.Regression.Evaluate(predictions, labelColumnName: "Label"); Console.WriteLine($"RMSE: {metrics.RootMeanSquaredError:F2}");
var experiment = mlContext.Auto().CreateRegressionExperiment(maxTimeInSeconds: 60); var result = experiment.Execute(data, labelColumnName: "Label"); Console.WriteLine($"最佳模型:{result.BestRun.TrainerName}, RMSE: {result.BestRun.ValidationMetrics.RootMeanSquaredError:F2}");
[ApiController] [Route("api/[controller]")] public class PredictController : ControllerBase { private static PredictionEnginePool < Input, Output > _predictionEnginePool; public PredictController(PredictionEnginePool < Input, Output > pool) = > _predictionEnginePool = pool; [HttpPost] public ActionResult < Output > Post([FromBody] Input input) = > Ok(_predictionEnginePool.Predict(modelName: "Model", example: input)); }
Docker多階段構建:
FROM mcr.microsoft.com/dotnet/aspnet:7.0 AS base WORKDIR /app COPY --from=build /app/publish . ENTRYPOINT ["dotnet", "YourApp.dll"]
Kubernetes部署:
apiVersion: apps/v1 kind: Deployment metadata: { name: ai-model-deployment } spec: replicas: 3 selector: { matchLabels: { app: ai-model } } template: metadata: { labels: { app: ai-model } } spec: containers: - name: ai-model image: yourrepo/ai-model:latest resources: { limits: { cpu: "500m", memory: "512Mi" } } ports: [ { containerPort: 80 } ] imagePullSecrets: [{ name: regcred }]
/metrics
.zip
通過本文的C# AI面試指南,你將具備理論深度與實戰經驗,并能在面試中展現出卓越的機器學習與.NET項目實戰能力。祝你面試成功,開啟AI+ .NET工程師的新篇章!